Why use Farrat Neoprene CR75?
Farrat Neoprene CR is a high quality, easy to use and economical elastomeric isolation material. It is produced in the UK by Farrat using high quality ISO6446 compliant chloroprene compound. Farrat Neoprene CR provides excellent low frequency vibration, acoustic and shock isolation and has been used globally in industrial and structural applications.

Features
- Tested and approved to ISO6446 and BS6177.
- Medium resilience and damping characteristics.
- Excellent shock absorption characteristics.
- Excellent ozone, oil and general chemical resistance.
- Low level of creep.
- Long lifetime (in excess of 60 years).
- Fire / flame resistance.
- Can be supplies as sheets or cut to size pads and strips (including holes and slots if required) according to the customer’s requirements.

Applications
Farrat Neoprene has been used in a vast range of applications such as;
- Acoustic structural bearings (plain pads, strips or laminated).
- Anti vibration pads, steelwork acoustic isolators.*
- Resilient seating connections within concrete and steel building structures to allow movement and rotation.
- Acoustic strip bearings for walls.
- Slide bearings.
- Plain pad isolators for machinery and plant equipment.

In low pressure applications it may be necessary to consider alternative materials such as Farrat Isomat. Farrat are happy to advise and provide technical calculations to specify the most appropriate material.

For more detailed information and explanations of the pad performance outlined in this datasheet please refer to the Farrat design document: SVI–Structural Bearing Design.

*Where bolt through connections are required, Farrat Anti-vibration (AW) washers and bushes should be incorporated in order to allow free movement of the pad and to ensure that the bolt does not transmit vibration across the connection.
<table>
<thead>
<tr>
<th>Material Code</th>
<th>Material Thickness</th>
<th>Pad Length</th>
<th>Pad Width</th>
<th>Pad Area</th>
<th>Applied Load</th>
<th>Applied Load</th>
<th>Applied Load Pressure (Max 15%)</th>
<th>Shape Factor</th>
<th>Compression Modulus (E)</th>
<th>Spring Const (K)</th>
<th>Maximum Static Deflection (Max 15%)</th>
<th>Vertical Dynamic Natural Frequency (Fnd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR75-10</td>
<td>250 mm</td>
<td>65.6</td>
<td>0.7</td>
<td>2.6</td>
<td>1.3</td>
<td>17.3</td>
<td>43237</td>
<td>1332</td>
<td>2208</td>
<td>15.0</td>
<td>15.0</td>
<td>2208</td>
</tr>
<tr>
<td>CR75-15</td>
<td>150 mm</td>
<td>3.1</td>
<td>0.3</td>
<td>1.2</td>
<td>0.8</td>
<td>8.3</td>
<td>389209</td>
<td>42.85</td>
<td>23.0</td>
<td>15.0</td>
<td>15.0</td>
<td>42.85</td>
</tr>
<tr>
<td>CR75-20</td>
<td>100 mm</td>
<td>1.1</td>
<td>0.1</td>
<td>1.5</td>
<td>0.9</td>
<td>10.2</td>
<td>2877</td>
<td>3.0</td>
<td>13.0</td>
<td>15.0</td>
<td>15.0</td>
<td>3.0</td>
</tr>
<tr>
<td>CR75-25</td>
<td>50 mm</td>
<td>0.1</td>
<td>0</td>
<td>1.5</td>
<td>1.0</td>
<td>3.6</td>
<td>360</td>
<td>3.75</td>
<td>11.0</td>
<td>15.0</td>
<td>15.0</td>
<td>3.75</td>
</tr>
<tr>
<td>CR75-30</td>
<td>25 mm</td>
<td>0.06</td>
<td>0</td>
<td>0.8</td>
<td>1.0</td>
<td>3.6</td>
<td>360</td>
<td>3.75</td>
<td>11.0</td>
<td>15.0</td>
<td>15.0</td>
<td>3.75</td>
</tr>
<tr>
<td>CR75-35</td>
<td>12.5 mm</td>
<td>0.05</td>
<td>0</td>
<td>0.8</td>
<td>1.0</td>
<td>3.6</td>
<td>360</td>
<td>3.75</td>
<td>11.0</td>
<td>15.0</td>
<td>15.0</td>
<td>3.75</td>
</tr>
</tbody>
</table>